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ABSTRACT

The ocean has been traditionally viewed as a 2 class system.

Morel and Prieur (1977) classified ocean water according to the

dominant absorbent particle suspended in the water column. Case 1

is described as having a high concentration of phytoplankton (and

detritus) relative to other particles. Conversely, case 2 is described

as having inorganic particles such as suspended sediments in high

concentrations. Little work has gone into the problem of mixing bio-

optical models for these different water types. An approach is put

forth here to blend bio-optical algorithms based on a fuzzy

classification scheme. This scheme involves two procedures. First, a

clustering procedure identifies classes and builds class statistics from

in-situ optical measurements. Next, a classification procedure

assigns satellite pixels partial memberships to these classes based on

their ocean color reflectance signature. These membership

assignments can be used as the basis for a weighting retrievals from

class-specific bio-optical algorithms. This technique is demonstrated

with in-situ optical measurements and an image from the SeaWiFS

ocean color satellite.



Introduction

In remotely-sensed ocean color data, boundaries between

different water types are uncertain (or fuzzy). This is particularly

true in the nearshore environment where suspended sediments and

dissolved organic matter influence the optical signature of the water.

It is generally agreed that site-specific algorithms will have to be

developed to account for differences in the optical properties of

particles and dissolved substances found in a particular region. Once

these algorithms are developed and parameterized, one must decide

when or where to apply a particular algorithm.

Fuzzy classification techniques are well suited for ocean color

remote sensing applications and can solve the problem of blending

bio-optical algorithms. A fuzzy classification scheme can mix

algorithms by extending partial membership of a pixel to one or

more water classes. This is done by computing memberships to

predetermined classes by a membership function which uses the

remotely-sensed reflectance spectra for a given pixel and genei-ated

class statistics from in-situ measurements. These memberships can

then be used to weight the retrievals of class-specific algorithms.

This allows a graded transition between different water types in an

image scene, and multiple class-dependent algorithms can be

effectively mixed or blended. The work presented here will

demonstrate a fuzzy classification scheme using a 2-step procedure.

(Step 1) The clustering of in-situ reflectance data is first segregated

into distinct classes and (Step 2) the membership determination of

multispectral satellite data is computed for these classes using a

membership function.

Fuzzy Logic

Fuzzy logic was first developed by Zadeh (1965) as a

mathematical way to represent vagueness contained in imprecise

information. It is a superset of classical set theory which contains

objects that are required to satisfy precise boundaries for set

membership. Fuzzy theory extends beyond this type of hard

precision and allows for partial set membership and boundaries

which are not sharply defined (which is more typical of

environmental data). The crisp event (one pixel-one class) is



replaced by an event or (class membership) that can have a real
value between 0 and 1. In the context of remote sensing, a set (or
class) is defined by the partitioning of spectral space (feature space),
and classification becomes a matter of an object's position in feature
space. These membership grades describe the extent to which a
pixel may belong to a class, which involves quantifying the nearness
or proximity of a pixel's position in spectral space to a pre-defined
class vector. The membership values assigned may belong to one of
three categories (label types) described in the literature (Bensaid e t

al, 1996): crisp (or "hard"; non-fuzzy), fuzzy and probabilistic. Let c

denote the number of classes, l<c<n, and define three sets of label

vectors as follows:

N.t,, = {y ___ ly i _ [0,1]VI} (unconstrained) fuzzy;

(constrained) fuzzy/probabilistic;

N, = ix ly, {o,1}vil crisp (or hard).

The crisp or hard label allows for full membership in a single class,

and no membership in any other class. The constrained fuzzy label

allows for partial membership to any or all classes with the

restriction that the sum of all partial memberships must equal 1.0.

The unconstrained label allows for partial membership to any of the

classes, but there is no restriction on the sum of the class

memberships. Both the constrained and unconstrained labels can

allow for full membership in a given class, or can be "hardened" to

produce a crisp label set by changing the maximum class

membership value to "1" and setting all others to "0".

The Complete Fuzzy Model

The advantage of fuzzy partitioning is that is allows for

intermediate situations and class mixtures to be described without

loss of information. A flowchart is depicted in Figure I which

illustrates the complete scheme of using fuzzy classification with bio-

optical algorithm parameterization to retrieve in-water constituent



concentrations. According to this scheme, in-situ optical data are
clustered and accompanying in-water concentration measurements
are separated according to class. Algorithms can be parameterized
for each class (Feng et al, unpublished). Class means and other
statistics are calculated and pixel memberships can be computed
from a satellite image. The membership function then can be used to
weight the retrieval of each class algorithm. The weighted sum of all
algorithm retrievals becomes the blended retrieval for that pixel.

Methods

Cluster Analysis - Step One

An in-situ optical data set (Kishino et al., 1985) was used in

this work to demonstrate the clustering step. The measurements

made for this data are irradiance reflectance (every 5 nm from 400

to 750 nm), Chl a, total suspended matter (TSM), colored dissolved

organic matter absorption (ag) , and Secchi depth.

Unsupervised clustering is the process of identifying and

characterizing natural subgroups (creating classes) that exist within

the data. This procedure was performed with the MultiSpec

software (Landgrebe and Biehl, 1997), which uses the ISODATA

method, a self-iterative algorithm based on a minimum Euclidean

distance measure to cluster data, and other in-water measurements

were grouped according to these clusters.

Fuzzy Classification - Step Two

Class membership grades are determined for each pixel in a

satellite image. The membership grade is a relative measure of how

close the pixel is to the class mean radiance vector. The type of

class membership function used determines not only t h e

membership grade, but shapes the decision-boundaries produced by

the classifier. For example, the Minimum Euclidean Distance

classifier produces a hyper-plane boundary as opposed to Guassian

Maximum Likelihood classifiers which produce quadratic boundaries

(Shahshahani and Landgrebe, 1994). The decision boundary shape

should reflect the complexity of the class shape which varies and is



dependent on the class statistics, such as the variance and
covariance.

A Chi-square probability function was used for the class
membership function. This function is given as follows:

Z 2

0

where Z 2 is the Chi-square distribution function given by:

X.21121"-2)e-X2 /2

f (Z2)= 2./2F(n/2)

and Z 2 is the Mahalonobis distance from the pixel radiance vector x

to the ith class mean radiance vector. The result is the probability P

of observing the radiance or reflectance vector x in water of class I.

The probability was based on a 4 band vector (at 412, 443, 490 and

555 nm) to simplify the integral.

Image Pixel Classification

A satellite image from SeaWiFS has been used to demonstrate

the fuzzy classification scheme. The calculations were performed

based on remote sensing reflectance. The in-situ optical

measurements were converted from irradiance reflectance to remote

sensing reflectance with the following equation:

where R was the measured irradiance reflectance. A constant '_'

factor of 4.5 was used, although it is known to vary from 3 to 5

(Morel et al, 1995).

Satellite water-leaving radiance values were also converted to

remote sensing reflectance with the following equation (Gordon et al.,

1988):
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RT$ _--

M + rQ( LwN///FoI

where LwN is the normalized water-leaving radiance and M, F 0 and rQ

are wavelength-dependent parameters.

Results

lrradiance Reflectance Clustering

The clustering process resulted in 4 clusters being identified.

Their reflectance characteristics can be seen in Figure 2. The spectral

shapes for clusters 1-3 show that these waters are predominantly

green in color (cluster 4 exhibits a blue-green water color). This is

typical of coastal waters and turbid estuarine environments.

Spectral shape and magnitude varied amongst the four classes. The

differences and similarities are more discernible when looking at the

mean class spectral values plotted together (Figure 4). Class 1 had

the highest mean values from 400 to 550 nm, as well as a

pronounced plateau between 490 to 570 nm. Class 2 and 3 were

similar in shape throughout the spectrum, but with different

magnitudes. These 2 classes exhibited a rising reflectance curve

peaking around 500 nm, then declining. Class 4 exhibited the only

declining reflectance shape from 400 to 500 nm, which is typical of a

more oceanic-type reflectance shape (Roessler and Perry, 1995). All

classes exhibited similar shape after 500 nm.. The spectral shapes of

these classes can be explained by examining the in-water

constituents grouped by cluster.

Tokyo Bay In-situ Data

The clustered in-situ data are shown in Figure 3. Chl a

concentrations ranged from 0.25 pg/1 to 34.48 l.tg/1, while TSM

concentrations ranged from 0.10 to 6.4 mg/1. Generally, Chl a and

TSM concentrations tended to covary. Thus, phytoplankton

dominate the particulate fraction for most stations. However, cluster

1 tended to have a lower Chl a to TSM ratio, perhaps indicating that

suspended sediments contribute significantly to the radiance

distribution. This effect can be seen in the mean reflectance curve
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for cluster 1 (Figures 2 and 4). Secchi depths ranged from 2.5 m to
27.0 m, and also correlated with high and low levels of TSM and Chl

a.

The ag absorption coefficient for _.=375nm ranged from a low

of 0.55 to a high of 1.022. The background oceanic value for ag has

been previously assigned a value of 0.06 (Gordon et al., 1988). The

ag values measured in Tokyo Bay are much higher in comparison the

open ocean, and is not an insignificant absorber in the water column.

The ag concentration also showed a covarying relationship with Chl a

(Feng et al., unpublished).

Satellite Image Pixel Classification

The class probability maps are shown in Figure 5. These maps

show the probability (in percent) that a given pixel belongs to the

classes given in Figure 4. There is partial membership to class 1

along the coast near the Bay of Fundy, and along the western edge of

Nova Scotia. There is also some membership over George's Bank.

When viewing the true color image of the scene (Figure 6), the pixels

which show membership in class 1 are from the areas colored yellow.

These are highly turbid areas in which the reflection from

suspended sediments influences the optical signal.

A cluster of pixels showing membership to class 2 is located

over George's Bank. There is also a group of pixels near Nantucket

Shoals which shows partial membership to this class. Weak

membership or probability is given to pixels associated with class 1

(see above). This class is associated with orange-brown colored

pixels from Figure 6.

Membership in class 3 is strong along the New England coast,

particularly high in what appears to be an offshore plume extending

from a Maine estuary (Penobscot). There is partial membership from

waters circling George's Bank, and a parcel of water near the Bay of

Fundy. The pixels showing membership in class 3 associate with the

brown-colored pixels in Figure 6.

Class 4 membership is high throughout the interior of the Gulf

of Maine and south of Cape Cod. Notably absent are pixels from

George's Bank and the offshore plume associated with class 3, as well

as near-shore waters. Membership in this class is associated with

the dark green-blue areas of Figure 6. This membership is consistent

with the type of water that class 4 represents which can be gathered



from Figure 3. This is the lowest chlorophyll a-laden water type
from Tokyo Bay and the class mean spectral shape resembles typical
"oceanic" water.

There are areas of the image that do not show membership in
any of the classes representedl A map of the sum of class

probabilities (Figure 7)shows which areas are poorly represented.

The most conspicuous areas are the offshore open-ocean waters

along the bottom and near the bottom right of the Gulf of Maine

image scene. The Tokyo Bay measurements did not contain any true

"open-ocean" stations and it is not surprising that these pixels are not

represented in the image. The other areas of low probability sums

are pixels from George's Bank and near the coast around Nova Scotia.

These are waters from very turbid environments and contain

suspended sediments. This type of water also was not well

represented in the Tokyo Bay data set, although class 1 does show a

high total suspended matter to chlorophyll a ratio which may

indicate a stronger effect on the optical signal from suspended
sediments.

In contrast, there are pixels which have more than 100%

probability (red pixels) which are found in the central portion of the

Gulf of Maine and along certain areas of the coast. This effect is

caused by a lack of separation between classes or over-

representation. The classification maps that overlap in these areas

are class 3 and 4 (Figure 5). The mean spectral curves for these

classes in Figure 3 show that they are both lower than the other 2

class curves, but have opposite slopes in the SeaWiFS band range and

appear separate. However, the Q factor is also influencing the class

membership values as it is not constant but varies as seen from in

situ measurements (Zibordi et al., 1997).

Discussion

Classification of ocean water types was introduced by Jerlov

(1951) and was based on the transmittance of downwelling

irradiance in the surface layer. Jerlov (1976) discusses 12 optically

different classes of ocean water ranging from oceanic to coastal.

Morel and Prieur (1977) classified ocean water into 2 cases based on

the type of absorbent particle suspended in the water column.

Other classification schemes based on other criteria have also been



put forth (Kirk, 1980; Pevelin and Rutkovskaya, 1977; Smith and

Baker, 1978). The classification scheme introduced here is built upon

clustering optical data into classes based on irradiance spectral

characteristics. These classes are used to extend partial or full

memberships to ocean color satellite data using a membership

function. This serves to allow for mixtures of water types that

naturally occur in the ocean.

The methodology presented here is one that is commonly used

in the classification of land remote sensing images (Wang, 1990; Jia

and Richards, 1994; Jenson, 1996). The fuzzy probability results

presented here are intermediary in the sense that the pixel

probability values will be used as weighting-factors for the class-

specific algorithms. The final output of the processing stream will

be constituent concentration maps such as chlorophyll a and ag

absorption. However, the classification maps themselves contain

some intriguing information. The notion of separable ocean classes

and class mixtures raises the question of exactly what do we mean

by ocean classes and class membership? Some insight into this can

be gathered by comparing land classification with ocean classification

[as used in the context of this paper].

The ocean is not a static or rigid environment unlike the

terrestrial environment, but a fluid constantly moving carrying

particles that are changing in terms of their concentration and

composition. These changes cause the spectral nature of ocean pixels

to rapidly change over space and time. The spectral response of land

pixels change as well, but the time scales for changes much greater.

Thus, class structure in the ocean varies dynamically with space and

time. There is no easy way of verifying class structure within the

ocean. Land scenes can be compared with airplane photographs and

topographic maps, but these are not easily obtained for the ocean.

Since the ocean is constantly changing, sea-truth information would

only be valid for a concurrent remote-sensing overpass. Despite

these limitations, the spectral classes for the ocean may be far fewer

than the land. A typical land scene may have over 60 known classes,

compared to the 4 classes found in this analysis. Although only 4

classes were identified, it would be expected for these to change

from region to region. We performed the same unsupervised

clustering on an optical data set from the North Sea and 4 clusters

were coincidentally identified, but were vastly different in terms of

spectral shape. Not only are there fundamental differences in the



way that classes are thought of and measured between the land and

ocean, the way these classes are interpreted on a pixel and sub-pixel
level are also very different.

The concept of fuzzy classification in land remote sensing is
typically used as a way of subdividing the pixel into more than one
class coverage (a class coverage is a labeled class such as "woods",
"grassland", or "pasture"). The membership values assigned for a
pixel to given classes represent the percent composition of that
coverage within the pixel. In contrast to a mixed land pixel, a
mixed-class ocean pixel can truly be a blend of water types which
share characteristics down to the Nisken bottle sample (it also can be
two or more water types occupying the same pixel). These class
mixtures then represent real blends of water in between ocean
classes. The resulting classification maps in fact show convincing
patterns of distinct ocean water masses and the gradual (in some
cases abrupt) transition with adjacent water masses. The use of a
classification scheme may also then provide additional information
then as a tracer of water mass movement from a time-series of
satellite images that one may not readily see in a constituent

concentration map. While the results presented here do show that,

it is important to consider that this is really a demonstration of the

application of a fuzzy classification scheme. There are limitations in

this present example.

The in-situ optical data from Tokyo Bay seems to be reasonably

representative with water types in this particular image scene from

Gulf of Maine. However, as evident from Figure 7, not all water

types are accounted for in the in-situ data. This can be explained by

the lack of any open ocean stations in the Tokyo Bay data set, and

the presence of open-ocean water in the sample image scene. It is

also important to consider that the in-situ data was irradiance

reflectance which was converted to remote sensing reflectance. The

choice of a constant Q-factor is not optimal in this conversion. The Q-

factor varies with wavelength and with radiance distribution. Thus,

the mean class spectral values for remote sensing reflectance were

not entirely accurate, and were a distortion of true class mean

spectral shape.

There were 4 classes determined from the Tokyo Bay data set.

Landgrebe (1994) lists three basic requirements for the training of a

classifier. These are 1) the number of classes must be exhaustive, or

that all pixels in a scene can be assigned to a class; 2) the classes

l0



must be separable by their spectral characteristics; and 3) the classes
must of informational value, or be classes of interest to the user. I t

is the purpose of a training set to provide a heterogeneous
population that adequately represents the true classes that naturally
exist for that region. The samples from Tokyo Bay were restricted
to a fairly small spatial domain of a few 10's of kilometers, compared
to the image scene used in this analysis which is 100's of kilometers.
While the data set may adequately describe the range in water types
in Tokyo Bay, it may not a complete representation of other regions.
Obviously, the water types from Tokyo Bay are not totally
representative of every water type from the Gulf of Maine scene.
Every region may have its own unique water types. Models
developed from regional data sets become tuned to those areas. An
example of this can be seen in primary productivity models
(Campbell et al., 1998). Similarities of water types between regions

are evidenced in the Gulf of Maine class memberships maps created

from the Tokyo Bay classes. However, more comparison is needed

between reflectance measurements and bio-optical models from

various regions before cross-regional models can be deemed reliable.

It is desirable to have the membership sum for a given pixel to

have a value of 1.00 to fully account for all probabilities. Using the

methods we employed, each class probability was allowed to be

unrestricted and take on whatever value was returned by the

probability function. It is common in land coverage classification

(using Landsat TM imagery) to normalize individual class

probabilities to the sum of all class probabilities and force

memberships to total to 1.00 (Jenson, 1996). This can distort the

true probability of a given vector belongifig to a labeled class,

especially when the pixel vector is far away from class mean vectors

and returned probabilities are of very small magnitude. This can

assign class membership to a pixel when in reality none exists.

However, it can be seen that membership sums can exceed 1.00. It

may be advantageous to normalize in these circumstances, or

distortions may also arise when applying these weights to the class

algorithms.

With all these considerations, fuzzy logic can discriminate

between different water types and allow for class mixture situations.

This can be particularly beneficial to bio-optical algorithm retrievals,

which up to now have not adequately responded to the challenge of

blending different algorithms suited to different water types.
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Although the results presented here are prone to errors previously
discussed, the promise of real progress on this front is not far away
in the future. By creating and parameterizing bio-optical algorithms
based on local in-situ data sets which contain remote sensing
reflectance measurements and concurrent IOP measurements, the
implementation of a fuzzy classification scheme can improve
constituent retrieval accuracy.
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Conclusions

Fuzzy classification of ocean color satellite images has been

demonstrated. Based on the clustering of in-situ optical

measurements, pixels can be assigned partial memberships to these

classes. The class memberships can be used as to derive weighting

factors for class-specific bio-optical algorithms. This method allows

for algorithm blending in a way that avoids the "patch-work quilt"

effect associated with non-weighted or hard-partitioned classification

schemes. The initial choice of the number of clusters to be extracted

from the in-situ optical data is crucial. This will vary from region to

region. In our analysis, 4 classes were determined. Further work on

the blending of these domain classes remains as one of our tasks. I n

any case, fuzzy classification seems well suited to the needs of ocean

color remote sensing.
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Figure 2. Tokyo Bay irradiance reflectance cluster results based on 45 measurements taken at 67

wavelengths (400 - 750 nm every 5 nm). Top left: Cluster 1, N=6; top right: Cluster 2, N=I2;
bottom left: Cluster 3, N=16; bottom right: Cluster 4, N=I 1. Mean curves are shown in red,

individual stations in blue. These spectral curves were clustered using the ISODATA method
using minimum Euclidean distance.
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SeaWiFS bands (412, 443,490, 510 and 555 nm) are shown with *. The values at 412, 443,490

and 555 nm were used in the membership function.



Figure 5. Pixel membership to the 4 Tokyo Bay classes for a SeaWiFS image taken over the Gulf

of Maine on Oct. 8, 1997. The image shows the probability (in percent) of each water pixel

belonging to each class. Pixel membership was determined from a Chi-square distribution

function. Top left: Class 1 membership: top right: Class 2 membership; bottom left: Class 3

membership; bottom right: Class 4 membership.



Figure6. Truecolor imagefor Oct. 8, 1997. Thecolor of thewateris closelyassociatedwith
classmembershipsfrom Figure5.



Figure7. Probability Summapof the4 classmembershipsshownin Figure5. Pixelsrangefrom
low probability (blackanddarkbluepixels) to 100%probability (white). Redpixelsarewherethe
sumwasgreaterthan 100%. This mapshowsthecoverageof classdistribution in the image. Low
probabilitypixels(bottomright) indicatea lackof representationin the in-situ measurementset.
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